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We describe some examples of objects in thermal physics that exhibit periodicity in Euclidean time.
We discuss the path integral construction of the partition function, the periodicity of thermal correlators
and the trick to compute black hole temperatures.

1 Partition function

An important object in thermal physics is the partition function for the theory at temperature T = 1/β.
We can write the classical definition for the case of a quantum system as

Z =
∑
n

e−βEn =
∑
n

〈n| e−βH |n〉 = Tr
(
e−βH

)
. (1)

It is of course possible to take the trace over the Hilbert space of the theory in any basis, so we can use the
position basis |X〉 instead:

Z =

∫
dX 〈X| e−βH |X〉 . (2)

To go further in the calculation of the partition function, we must remember that the path integral in
quantum mechanics is an object that computes transition amplitudes in the following way:

〈xf , tf |xi, ti〉 = 〈xf | e−iH(tf−ti) |xi〉 =

∫
x(ti)=xi
x(tf )=xf

Dx(t) eiS[x] . (3)

This is the propagator to go from position xi at time ti to position xf at time tf . The path integral is basically

a sum over all paths x(t) that satisfy the boundary conditions, weighted by their action S[x] =
∫ tf
ti
dtL(x, t).

To connect this to the partition function, we must study the path integral in Euclidean/imaginary time by
defining τ = it⇒ t = −iτ . We then have

〈xf | e−H(τf−τi) |xi〉 =

∫
x(τi)=xi
x(τf )=xf

D̃x(τ) e−SE [x] , (4)

where the Euclidean action is SE [x] =
∫ τf
τi
dτ L(x,−iτ). The main difference in the Euclidean case is the

Lagrangian that is used. If, for example, the usual Lagrangian is L(x, t) = m
2

(
dx
dt

)2
, then the one that is

used in the Euclidean case is L(x,−iτ) = −m2
(
dx
dτ

)2
. Using this, it is now clear that we can write

〈X| e−βH |X〉 =

∫
x(0)=x(β)=X

D̃x(τ) e−SE [x] . (5)

Integrating over X, we recover the partition function. However, the effect of adding this integral is simply
to allow for any possible trajectory that is periodic with period β in the path integral. Thus the result is

Z =

∫
dX

∫
x(0)=x(β)=X

D̃x(τ) e−SE [x] =

∫
periodic x(τ)

0≤τ≤β

D̃x(τ) e−SE [x] . (6)

In a sense we can say that the partition function if the Euclidean path integral where we integrate over all
functions (not necessarily smooth) on a circle of circumference β.
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2 Thermal correlators (KMS condition)

Another object of importance in thermal field theories is correlation functions. At thermal equilibrium,

a system is in a state of energy E with probability e−βE

Z . This means that we can compute the thermal
expectation value of quantum operators in the following way:

〈O〉β =
∑
i

e−βEi

Z
〈Ei| O |Ei〉 =

1

Z
Tr
(
e−βHO

)
. (7)

Now we will use this method to compute the thermal two-point function of a field, which is basically the
thermal Green’s function (maybe up to a sign),

Gβ(τ, x) ≡ 〈O(τ, x)O(0, 0)〉β =
1

Z
Tr
(
e−βHO(τ, x)O(0, 0)

)
. (8)

Note that, as in any QFT correlator, there is an implicit time ordering (here Euclidean time ordering) that
puts operators in chronological order from right to left. The usual time evolution in quantum mechanics can
be translated to Euclidean time:

O(t, x) = eiHtO(0, x)e−iHt =⇒ O(τ, x) = eHτO(0, x)e−Hτ (9)

and this can be used to translate one of the operators from τ to τ − β:

Gβ(τ, x) =
1

Z
Tr
(
O(τ − β, x)e−βHO(0, 0)

)
. (10)

Using cyclicity of the trace, we can rewrite this as

Gβ(τ, x) =
1

Z
Tr
(
e−βHO(0, 0)O(τ − β, x)

)
(11)

and because of the time ordering this is equivalent to

Gβ(τ, x) = Gβ(τ − β, x) . (12)

This shows that the thermal two-point function is periodic with period β.

3 Black hole temperature

In the 70s, Stephen Hawking showed that black holes are thermal object and calculated their temperature.
Here we discuss a trick that allows us to calculate this temperature in a simple way. The trick is not justified
here but it really does work. The idea is that, since black holes are thermal objects, they must have a
periodicity in Euclidean time τ ∼ τ + β. To find the temperature T = 1/β, we take the near horizon limit
of the geometry and ask that it is smooth. More specifically we ask that there is no conical defect and it is
enough to fix the periodicity.

A black hole is in general described by a metric of the form

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2 dΩ2 (13)

where f(r) has a zero at the horizon r0. The Euclidean version of this is obtained as usual by putting t = −iτ
and the effect is just to cancel the minus sign in front of the time component of the metric. To go to the
near horizon limit, we write r = r0 + ε and consider ε to be small. We also ignore the angular part since it
doesn’t play a role in this story. In that case f(r) ≈ f ′(r0)ε and then

ds2 ≈ εf ′(r0) dτ2 +
dε2

εf ′(r0)
. (14)
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To recover a more familliar geometry, we define the following variables:

R ≡ 2

√
ε

f ′(r0)
Θ ≡ τf ′(r0)

2
, (15)

such that the metric becomes simply flat space in polar coordinates

ds2 ≈ dR2 +R2 dΘ2 . (16)

The important point here is that for this geometry to be smooth we need Θ to be periodic with period 2π.
Given that Θ is related to τ , this periodicity requirement can be translated to a period of 4π/f ′(r0) for τ .
This means that

TBH =
1

β
=
f ′(r0)

4π
. (17)

As an example, for the Schwarzschild black hole f(r) = 1 − 2M
r and r0 = 2M . This leads to T = 1

8πM ,
which agrees with Hawking’s result.
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